pwd
'/Users/ud4/repos/GitHub/FATESFACE'
from IPython.display import Image, display
display(Image(filename='/Users/ud4/Downloads/PIDs.png',width=800))
display(Image(filename='/Users/ud4/Downloads/BiomassVsPIDs.png',width=800))
print ("Source : Knox 2023 (under review; https://d197for5662m48.cloudfront.net/documents/publicationstatus/129549/preprint_pdf/4892791c8be5504aff47afd6065937b7.pdf)")
Source : Knox 2023 (under review; https://d197for5662m48.cloudfront.net/documents/publicationstatus/129549/preprint_pdf/4892791c8be5504aff47afd6065937b7.pdf)
import os,glob
import xarray as xr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pyreadr # to read .rds files
import datetime as dt
path_in = "/Users/ud4/FATESMDS_analysis/outputs/runs/tests_alp/230309/"
# RD only
fnames={}
fnames["DUK_PIDA_Conly_AgBgW"] = f"{path_in}Bharat_AW_Nalloc_api25e3sm_mf0df100_r0615_Base_PIDA_AgBgW_processed/Bharat_AW_Nalloc_api25e3sm_mf0df100_r0615_Base_PIDA_AgBgW_US-DUK_trans.nc"
fnames["ORN_PIDA_Conly_AgBgW"] = f"{path_in}Bharat_AW_Nalloc_api25e3sm_mf0df100_r0615_Base_PIDA_AgBgW_processed/Bharat_AW_Nalloc_api25e3sm_mf0df100_r0615_Base_PIDA_AgBgW_US-ORN_trans.nc"
fnames["DUK_PIDB_Conly"] = f"{path_in}Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDB_AgBgW_processed/Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDB_AgBgW_US-DUK_trans.nc"
fnames["ORN_PIDB_Conly"] = f"{path_in}Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDB_AgBgW_processed/Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDB_AgBgW_US-ORN_trans.nc"
fnames["DUK_PIDC_Conly"] = f"{path_in}Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDC_AgBgW_processed/Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDC_AgBgW_US-DUK_trans.nc"
fnames["ORN_PIDC_Conly"] = f"{path_in}Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDC_AgBgW_processed/Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDC_AgBgW_US-ORN_trans.nc"
fnames["DUK_PIDD_Conly"] = f"{path_in}Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDD_AgBgW_processed/Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDD_AgBgW_US-DUK_trans.nc"
fnames["ORN_PIDD_Conly"] = f"{path_in}Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDD_AgBgW_processed/Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDD_AgBgW_US-ORN_trans.nc"
fnames["DUK_PIDA_RD_AgBgW"] = f"{path_in}Bharat_AW_Nalloc_api25e3sm_mf0df100_r0615_Base_PIDA_AgBgW_RD_processed/Bharat_AW_Nalloc_api25e3sm_mf0df100_r0615_Base_PIDA_AgBgW_RD_US-DUK_trans.nc"
fnames["ORN_PIDA_RD_AgBgW"] = f"{path_in}Bharat_AW_Nalloc_api25e3sm_mf0df100_r0615_Base_PIDA_AgBgW_RD_processed/Bharat_AW_Nalloc_api25e3sm_mf0df100_r0615_Base_PIDA_AgBgW_RD_US-ORN_trans.nc"
fnames["DUK_PIDB_RD_AgBgW"] = f"{path_in}Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDB_AgBgW_RD_processed/Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDB_AgBgW_RD_US-DUK_trans.nc"
fnames["ORN_PIDB_RD_AgBgW"] = f"{path_in}Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDB_AgBgW_RD_processed/Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDB_AgBgW_RD_US-ORN_trans.nc"
#"ORN_PIDC_RD" : Simulation missing *Running
fnames["DUK_PIDC_RD_AgBgW"] = f"{path_in}Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDC_AgBgW_RD_processed/Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDC_AgBgW_RD_US-DUK_trans.nc"
fnames["ORN_PIDC_RD_AgBgW"] = f"{path_in}Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDC_AgBgW_RD_processed/Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDC_AgBgW_RD_US-DUK_trans.nc"
fnames["DUK_PIDD_RD_AgBgW"] = f"{path_in}Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDD_AgBgW_RD_processed/Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDD_AgBgW_RD_US-DUK_trans.nc"
fnames["ORN_PIDD_RD_AgBgW"] = f"{path_in}Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDD_AgBgW_RD_processed/Bharat_AW_Nalloc_api25e3sm_mf0df100_r0614_Base_PIDD_AgBgW_RD_US-ORN_trans.nc"
#fnames["DUK_PIDzero_RD"] = : Simulation missing *Running
#fnames["ORN_PIDzero_RD"] = f"{path_in}Bharat_AW_Nalloc_api25e3sm_mf0df100_r06122_Base_PIDzero_RD_processed/Bharat_AW_Nalloc_api25e3sm_mf0df100_r06122_Base_PIDzero_RD_US-ORN_trans.nc"
# Other global attributes for plots
logging_year= 1855
ds = {}
for idx, key in enumerate(fnames.keys()):
print (key)
ds[key] = xr.open_mfdataset(fnames[key],decode_times=True)
for idx, key in enumerate(ds.keys()):
ds[key]['time'] = pd.to_datetime(ds[key].time.values.astype(str))
DUK_PIDA_Conly_AgBgW ORN_PIDA_Conly_AgBgW DUK_PIDB_Conly ORN_PIDB_Conly DUK_PIDC_Conly ORN_PIDC_Conly DUK_PIDD_Conly ORN_PIDD_Conly DUK_PIDA_RD_AgBgW ORN_PIDA_RD_AgBgW DUK_PIDB_RD_AgBgW ORN_PIDB_RD_AgBgW DUK_PIDC_RD_AgBgW ORN_PIDC_RD_AgBgW DUK_PIDD_RD_AgBgW ORN_PIDD_RD_AgBgW
AW: PID-D for both Duke and ORNL, and PID-B for Duke.
sims = "DUK_PIDD_RD_AgBgW"
sims = "ORN_PIDD_RD_AgBgW"
sims = "ORN_PIDB_RD_AgBgW"
#sims = "DUK_PIDB_RD_AgBgW"
ds[key][var].groupby("time.year").mean('time')
<xarray.DataArray 'DENIT' (year: 148, lndgrid: 1)> dask.array<stack, shape=(148, 1), dtype=float32, chunksize=(1, 1), chunktype=numpy.ndarray> Coordinates: * year (year) int64 1850 1851 1852 1853 1854 ... 1993 1994 1995 1996 1997 Dimensions without coordinates: lndgrid
|
array([1850, 1851, 1852, 1853, 1854, 1855, 1856, 1857, 1858, 1859, 1860, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1869, 1870, 1871, 1872, 1873, 1874, 1875, 1876, 1877, 1878, 1879, 1880, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1889, 1890, 1891, 1892, 1893, 1894, 1895, 1896, 1897, 1898, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1907, 1908, 1909, 1910, 1911, 1912, 1913, 1914, 1915, 1916, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1925, 1926, 1927, 1928, 1929, 1930, 1931, 1932, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1942, 1943, 1944, 1945, 1946, 1947, 1948, 1949, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997])
print ("\nAll Plots >>>>>>")
idx_logging_date = 5*365 # Jan 1, 1855
# For multiple variables on a same plot upto 5 years after logging
Yrs_Next = 5 # upto 5 years after logging
fig, axs = plt.subplots(9,1 , figsize=(15,30), dpi=400)
# Subplot 1 >>>
idx_ax = 0
var = "FATES_NPP"
# C-only
sim_conly = f"{sims.split('_')[0]}_PIDA_Conly_{sims.split('_')[-1]}"
key=sim_conly
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
axs[idx_ax].plot(ts_data.time, ts_data, label = var + " C-only")
# RD
key=sims
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
axs[idx_ax].plot(ts_data.time, ts_data, label = var )
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
axs[idx_ax].set_title(f"{key} Daily Logging + 5 years\n",fontsize=16)
axs[idx_ax].axhline(y = 0, color = 'r',lw=1, alpha=.1)
print(key)
# Subplot 1 <<<
# Subplot 2 >>>
idx_ax = 1
vars_plot = (
"""
FATES_STOREC_TF
FATES_STOREC
"""
).split('\n')
vars_plot = vars_plot[1:-1]
var = vars_plot[0]
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
axs[idx_ax].plot(ts_data.time, ts_data, label = var)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
ax_tmp = axs[idx_ax].twinx()
var = vars_plot[1]
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
ax_tmp.plot(ts_data.time,ts_data,'k.', label = var, alpha=.3)
ax_tmp.legend(loc = 5)
ax_tmp.set_ylabel (f"{var}({ds[key][var].units})")
ax_tmp.axhline(y = 0, color = 'r',lw=1, alpha=.1)
# Subplot 2 <<<
# Subplot 3 >>>
idx_ax = 2
vars_plot = (
"""
FATES_STOREN_TF
FATES_STOREN
"""
).split('\n')
vars_plot = vars_plot[1:-1]
var = vars_plot[0]
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
axs[idx_ax].plot(ts_data.time, ts_data, label = var)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
ax_tmp = axs[idx_ax].twinx()
var = vars_plot[1]
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
ax_tmp.plot(ts_data.time,ts_data,'k.', label = var, alpha=.3)
ax_tmp.set_ylabel (f"{var}({ds[key][var].units})")
ax_tmp.legend(loc = 5)
ax_tmp.axhline(y = 0, color = 'r',lw=1, alpha=.1)
# Subplot 3 <<<
# Subplot 4 >>>
idx_ax = 3
ts_data = (ds[key]["FATES_STOREC_TF"]/ds[key]["FATES_STOREN_TF"])[idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
axs[idx_ax].plot(ts_data.time, ts_data, label = "FATES_STOREC_TF/FATES_STOREN_TF")
ax_tmp = axs[idx_ax].twinx()
ts_data = (ds[key]["FATES_STOREC"]/ds[key]["FATES_STOREN"])[idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
ax_tmp.plot(ts_data.time, ts_data, 'k.', label = "FATES_STOREC/FATES_STOREN")
ax_tmp.legend(loc = 5)
ax_tmp.set_ylabel (f"{var}({ds[key][var].units})")
# Subplot 4 <<<
# Subplot 5 >>>
idx_ax = 4
ts_data = (ds[key]["FATES_FROOT_ALLOC"]/ds[key]["FATES_LEAF_ALLOC"])[idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
axs[idx_ax].plot(ts_data.time, ts_data, label = "FATES_FROOT_ALLOC/FATES_LEAF_ALLOC")
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
ax_tmp = axs[idx_ax].twinx()
ts_data = ds[key]["FATES_L2FR"][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
ax_tmp.plot(ts_data.time, ts_data, 'k.', label = "FATES_L2FR")
ax_tmp.set_ylabel (f"{ds[key]['FATES_L2FR'].units}")
ax_tmp.legend(loc = 5)
# Subplot 5 <<<
# Subplot 6 >>>
idx_ax = 5
vars_plot = (
"""
FATES_LEAFC
FATES_FROOTC
"""
).split('\n')
vars_plot = vars_plot[1:-1]
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
axs[idx_ax].plot(ts_data.time, ts_data, label = var)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
ax_tmp = axs[idx_ax].twinx()
ts_data = (ds[key]["FATES_FROOTC"]/ds[key]["FATES_LEAFC"])[idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
ax_tmp.plot(ts_data.time, ts_data, 'k.', label = "FATES_FROOTC/FATES_LEAFC")
ax_tmp.legend(loc = 5)
ax_tmp.set_ylabel (f"Unitless")
# Subplot 6 <<<
# Subplot 7 >>>
idx_ax = 6
vars_plot = (
"""
FATES_NO3UPTAKE
FATES_NH4UPTAKE
"""
).split('\n')
vars_plot = vars_plot[1:-1]
var = vars_plot[0]
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
axs[idx_ax].plot(ts_data.time, ts_data, label = var)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
axs[idx_ax].axhline(y = 0, color = 'r',lw=1, alpha=.1)
ax_tmp = axs[idx_ax].twinx()
var = vars_plot[1]
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
ax_tmp.plot(ts_data.time,ts_data,'k.', label = var)
ax_tmp.legend(loc = 5)
# Subplot 7 <<<
# Subplot 8 >>>
idx_ax = 7
vars_plot = (
"""
GROSS_NMIN
NET_NMIN
"""
).split('\n')
vars_plot = vars_plot[1:-1]
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
axs[idx_ax].plot(ts_data.time, ts_data, label = var)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
axs[idx_ax].axhline(y = 0, color = 'r',lw=1, alpha=.1)
# Subplot 8 <<<
# Subplot 9 >>>
idx_ax = 8
vars_plot = (
"""
SMIN_NO3_LEACHED
DENIT
"""
).split('\n')
vars_plot = vars_plot[1:-1]
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
axs[idx_ax].plot(ts_data.time, ts_data, label = var)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
axs[idx_ax].axhline(y = 0, color = 'r',lw=1, alpha=.1)
# Subplot 9 <<<
print(key)
for i in range(len(axs)):
axs[i].legend()
axs[i].axvline(x = dt.date(1855,1,1), color = 'g',lw=5, alpha=.1)
fig.savefig('./Plots/' + f'{key}_daily.pdf',bbox_inches='tight')
fig.savefig('./Plots/' + f'{key}_daily.png',bbox_inches='tight')
All Plots >>>>>> ORN_PIDB_RD_AgBgW
/Users/ud4/opt/anaconda3/envs/pyces/lib/python3.9/site-packages/dask/core.py:121: RuntimeWarning: invalid value encountered in true_divide return func(*(_execute_task(a, cache) for a in args))
ORN_PIDB_RD_AgBgW
print ("\nAll Plots >>>>>>")
idx_logging_date = 5*365 # Jan 1, 1855
# For multiple variables on a same plot upto 5 years after logging
Yrs_Next = 5 # upto 5 years after logging
fig, axs = plt.subplots(9,1 , figsize=(15,30), dpi=400)
# Subplot 1 >>>
idx_ax = 0
var = "FATES_NPP"
# C-only
sim_conly = f"{sims.split('_')[0]}_PIDA_Conly_{sims.split('_')[-1]}"
key=sim_conly
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
axs[idx_ax].scatter(ts_data.time, ts_data, marker=".", label = var + " C-only",alpha=.2)
# RD
key=sims
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
axs[idx_ax].scatter(ts_data.time, ts_data, marker=".", label = var ,alpha=.2)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
axs[idx_ax].set_title(f"{key} Daily Logging + 5 years (Scatter) \n",fontsize=16)
axs[idx_ax].axhline(y = 0, color = 'r',lw=1, alpha=.1)
print(key)
# Subplot 1 <<<
# Subplot 2 >>>
idx_ax = 1
vars_plot = (
"""
FATES_STOREC_TF
FATES_STOREC
"""
).split('\n')
vars_plot = vars_plot[1:-1]
var = vars_plot[0]
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
axs[idx_ax].scatter(ts_data.time, ts_data, marker=".", label = var,alpha=.2)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
ax_tmp = axs[idx_ax].twinx()
var = vars_plot[1]
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
ax_tmp.scatter(ts_data.time,ts_data,marker=".", color='k', label = var, alpha=.3)
ax_tmp.legend(loc = 5)
ax_tmp.set_ylabel (f"{var}({ds[key][var].units})")
ax_tmp.axhline(y = 0, color = 'r',lw=1, alpha=.1)
# Subplot 2 <<<
# Subplot 3 >>>
idx_ax = 2
vars_plot = (
"""
FATES_STOREN_TF
FATES_STOREN
"""
).split('\n')
vars_plot = vars_plot[1:-1]
var = vars_plot[0]
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
axs[idx_ax].scatter(ts_data.time, ts_data, marker=".", label = var,alpha=.2)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
ax_tmp = axs[idx_ax].twinx()
var = vars_plot[1]
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
ax_tmp.scatter(ts_data.time,ts_data, marker=".", color='k',label = var, alpha=.3)
ax_tmp.set_ylabel (f"{var}({ds[key][var].units})")
ax_tmp.legend(loc = 5)
ax_tmp.axhline(y = 0, color = 'r',lw=1, alpha=.1)
# Subplot 3 <<<
# Subplot 4 >>>
idx_ax = 3
ts_data = (ds[key]["FATES_STOREC_TF"]/ds[key]["FATES_STOREN_TF"])[idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
axs[idx_ax].scatter(ts_data.time, ts_data, label = "FATES_STOREC_TF/FATES_STOREN_TF",alpha=.2)
ax_tmp = axs[idx_ax].twinx()
ts_data = (ds[key]["FATES_STOREC"]/ds[key]["FATES_STOREN"])[idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
ax_tmp.scatter(ts_data.time, ts_data, marker=".", color='k', label = "FATES_STOREC/FATES_STOREN",alpha=.2)
ax_tmp.legend(loc = 5)
ax_tmp.set_ylabel (f"{var}({ds[key][var].units})")
# Subplot 4 <<<
# Subplot 5 >>>
idx_ax = 4
ts_data = (ds[key]["FATES_FROOT_ALLOC"]/ds[key]["FATES_LEAF_ALLOC"])[idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
axs[idx_ax].scatter(ts_data.time, ts_data, label = "FATES_FROOT_ALLOC/FATES_LEAF_ALLOC",alpha=.2)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
ax_tmp = axs[idx_ax].twinx()
ts_data = ds[key]["FATES_L2FR"][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
ax_tmp.scatter(ts_data.time, ts_data, marker=".", color='k', label = "FATES_L2FR",alpha=.2)
ax_tmp.set_ylabel (f"{ds[key]['FATES_L2FR'].units}")
ax_tmp.legend(loc = 5)
# Subplot 5 <<<
# Subplot 6 >>>
idx_ax = 5
vars_plot = (
"""
FATES_LEAFC
FATES_FROOTC
"""
).split('\n')
vars_plot = vars_plot[1:-1]
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
axs[idx_ax].scatter(ts_data.time, ts_data, label = var,alpha=.2)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
ax_tmp = axs[idx_ax].twinx()
ts_data = (ds[key]["FATES_FROOTC"]/ds[key]["FATES_LEAFC"])[idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
ax_tmp.scatter(ts_data.time, ts_data, marker=".", color='k', label = "FATES_FROOTC/FATES_LEAFC",alpha=.2)
ax_tmp.legend(loc = 5)
ax_tmp.set_ylabel (f"Unitless")
# Subplot 6 <<<
# Subplot 7 >>>
idx_ax = 6
vars_plot = (
"""
FATES_NO3UPTAKE
FATES_NH4UPTAKE
"""
).split('\n')
vars_plot = vars_plot[1:-1]
var = vars_plot[0]
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
axs[idx_ax].scatter(ts_data.time, ts_data, label = var,alpha=.2)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
axs[idx_ax].axhline(y = 0, color = 'r',lw=1, alpha=.1)
ax_tmp = axs[idx_ax].twinx()
var = vars_plot[1]
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
ax_tmp.scatter(ts_data.time,ts_data, marker=".", color='k', label = var,alpha=.2)
ax_tmp.legend(loc = 5)
# Subplot 7 <<<
# Subplot 8 >>>
idx_ax = 7
vars_plot = (
"""
GROSS_NMIN
NET_NMIN
"""
).split('\n')
vars_plot = vars_plot[1:-1]
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
axs[idx_ax].scatter(ts_data.time, ts_data, label = var,alpha=.2)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
axs[idx_ax].axhline(y = 0, color = 'r',lw=1, alpha=.1)
# Subplot 8 <<<
# Subplot 9 >>>
idx_ax = 8
vars_plot = (
"""
SMIN_NO3_LEACHED
DENIT
"""
).split('\n')
vars_plot = vars_plot[1:-1]
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var][idx_logging_date:idx_logging_date+Yrs_Next*365] # Daily data range from logging date to next five years
axs[idx_ax].scatter(ts_data.time, ts_data, label = var,alpha=.2)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
axs[idx_ax].axhline(y = 0, color = 'r',lw=1, alpha=.1)
# Subplot 9 <<<
print(key)
for i in range(len(axs)):
axs[i].legend()
axs[i].axvline(x = dt.date(1855,1,1), color = 'g',lw=5, alpha=.1)
#fig.savefig('./Plots/' + f'{key}_Scatter_daily.pdf',bbox_inches='tight')
#fig.savefig('./Plots/' + f'{key}_Scatter_daily.png',bbox_inches='tight')
All Plots >>>>>> ORN_PIDB_RD_AgBgW
/Users/ud4/opt/anaconda3/envs/pyces/lib/python3.9/site-packages/dask/core.py:121: RuntimeWarning: invalid value encountered in true_divide return func(*(_execute_task(a, cache) for a in args))
ORN_PIDB_RD_AgBgW
print ("\nAll Plots >>>>>>")
# For multiple variables on a same plot
fig, axs = plt.subplots(9,1 , figsize=(15,30), dpi=400)
# Subplot 1 >>>
idx_ax = 0
var = "FATES_NPP"
# C-only
sim_conly = f"{sims.split('_')[0]}_PIDA_Conly_{sims.split('_')[-1]}"
key=sim_conly
ts_data = ds[key][var].groupby("time.year").mean('time')
axs[idx_ax].plot(ts_data.year, ts_data, label = var + " C-only")
# RD
key=sims
ts_data = ds[key][var].groupby("time.year").mean('time')
axs[idx_ax].plot(ts_data.year, ts_data, label = var )
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
axs[idx_ax].set_title(f"{key} Annual Mean\n",fontsize=16)
# Subplot 1 <<<
# Subplot 2 >>>
idx_ax = 1
vars_plot = (
"""
FATES_STOREC_TF
FATES_STOREC
"""
).split('\n')
vars_plot = vars_plot[1:-1]
var = vars_plot[0]
ts_data = ds[key][var].groupby("time.year").mean('time')
axs[idx_ax].plot(ts_data.year, ts_data, label = var)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
ax_tmp = axs[idx_ax].twinx()
var = vars_plot[1]
ts_data = ds[key][var].groupby("time.year").mean('time')
ax_tmp.plot(ts_data.year,ts_data,'k+', label = var)
ax_tmp.legend(loc = 5)
ax_tmp.set_ylabel (f"{var}({ds[key][var].units})")
ax_tmp.axhline(y = 0, color = 'r',lw=1, alpha=.1)
# Subplot 2 <<<
# Subplot 3 >>>
idx_ax = 2
vars_plot = (
"""
FATES_STOREN_TF
FATES_STOREN
"""
).split('\n')
vars_plot = vars_plot[1:-1]
var = vars_plot[0]
ts_data = ds[key][var].groupby("time.year").mean('time')
axs[idx_ax].plot(ts_data.year, ts_data, label = var)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
ax_tmp = axs[idx_ax].twinx()
var = vars_plot[1]
ts_data = ds[key][var].groupby("time.year").mean('time')
ax_tmp.plot(ts_data.year,ts_data,'k+', label = var)
ax_tmp.set_ylabel (f"{var}({ds[key][var].units})")
ax_tmp.legend(loc = 5)
ax_tmp.axhline(y = 0, color = 'r',lw=1, alpha=.1)
# Subplot 3 <<<
# Subplot 4 >>>
idx_ax = 3
ts_data = (ds[key]["FATES_STOREC_TF"]/ds[key]["FATES_STOREN_TF"]).groupby("time.year").mean('time')
axs[idx_ax].plot(ts_data.year, ts_data, label = "FATES_STOREC_TF/FATES_STOREN_TF")
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
ax_tmp = axs[idx_ax].twinx()
ts_data = (ds[key]["FATES_STOREC"]/ds[key]["FATES_STOREN"]).groupby("time.year").mean('time')
ax_tmp.plot(ts_data.year, ts_data, 'k+', label = "FATES_STOREC/FATES_STOREN")
ax_tmp.legend(loc = 5)
ax_tmp.set_ylabel (f"{var}({ds[key][var].units})")
# Subplot 4 <<<
# Subplot 5 >>>
idx_ax = 4
ts_data = (ds[key]["FATES_FROOT_ALLOC"]/ds[key]["FATES_LEAF_ALLOC"]).groupby("time.year").mean('time')
axs[idx_ax].plot(ts_data.year, ts_data, label = "FATES_FROOT_ALLOC/FATES_LEAF_ALLOC")
#axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
ax_tmp = axs[idx_ax].twinx()
ts_data = ds[key]["FATES_L2FR"].groupby("time.year").mean('time')
ax_tmp.plot(ts_data.year, ts_data,'k+', label = "FATES_L2FR")
ax_tmp.set_ylabel (f"{ds[key]['FATES_L2FR'].units}")
ax_tmp.legend(loc = 5)
# Subplot 5 <<<
# Subplot 6 >>>
idx_ax = 5
vars_plot = (
"""
FATES_LEAFC
FATES_FROOTC
"""
).split('\n')
vars_plot = vars_plot[1:-1]
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
axs[idx_ax].plot(ts_data.year, ts_data, label = var)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
ax_tmp = axs[idx_ax].twinx()
ts_data = (ds[key]["FATES_FROOTC"]/ds[key]["FATES_LEAFC"]).groupby("time.year").mean('time')
ax_tmp.plot(ts_data.year, ts_data, 'k+', label = "FATES_FROOTC/FATES_LEAFC")
ax_tmp.legend(loc = 1)
ax_tmp.set_ylabel (f"Unitless")
# Subplot 6 <<<
# Subplot 7 >>>
idx_ax = 6
vars_plot = (
"""
FATES_NO3UPTAKE
FATES_NH4UPTAKE
"""
).split('\n')
vars_plot = vars_plot[1:-1]
var = vars_plot[0]
ts_data = ds[key][var].groupby("time.year").mean('time')
axs[idx_ax].plot(ts_data.year, ts_data, label = var)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
ax_tmp = axs[idx_ax].twinx()
var = vars_plot[1]
ts_data = ds[key][var].groupby("time.year").mean('time')
ax_tmp.plot(ts_data.year,ts_data,'k+', label = var)
ax_tmp.legend(loc = 5)
# Subplot 7 <<<
# Subplot 8 >>>
idx_ax = 7
vars_plot = (
"""
GROSS_NMIN
NET_NMIN
"""
).split('\n')
vars_plot = vars_plot[1:-1]
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
axs[idx_ax].plot(ts_data.year, ts_data, label = var)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
# Subplot 8 <<<
# Subplot 9 >>>
idx_ax = 8
vars_plot = (
"""
SMIN_NO3_LEACHED
DENIT
"""
).split('\n')
vars_plot = vars_plot[1:-1]
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
axs[idx_ax].plot(ts_data.year, ts_data, label = var)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
# Subplot 9 <<<
for i in range(len(axs)):
axs[i].legend()
axs[i].axvline(x = logging_year, color = 'r',lw=5, alpha=.2)
fig.savefig('./Plots/' + f'{key}.pdf',bbox_inches='tight')
fig.savefig('./Plots/' + f'{key}.png',bbox_inches='tight')
All Plots >>>>>>
/Users/ud4/opt/anaconda3/envs/pyces/lib/python3.9/site-packages/dask/core.py:121: RuntimeWarning: invalid value encountered in true_divide return func(*(_execute_task(a, cache) for a in args))
print(breakit)
--------------------------------------------------------------------------- NameError Traceback (most recent call last) /var/folders/f1/01gxw8vn74q_x_rf_p5ztryjr405zq/T/ipykernel_9767/4259712761.py in <module> ----> 1 print(breakit) NameError: name 'breakit' is not defined
print ("\nFigure Set 1 >>>>>>")
# For multiple variables on a same plot
sim_conly = f"{sims.split('_')[0]}_PIDA_Conly_{sims.split('_')[-1]}"
key=sim_conly
#key=sims
vars_plot = (
"""
FATES_GPP
FATES_AUTORESP
FATES_NPP
"""
).split('\n')
vars_plot = vars_plot[1:-1]
ymin = 9e20
ymax = -9e20
sum_ts = 0
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
sum_ts= sum_ts + ts_data
ts_data.plot(figsize=(20,3))
if np.min(ts_data.values) < ymin:
ymin = np.min(ts_data.values)
if np.max(ts_data.values) > ymax:
ymax = np.max(ts_data.values)
plt.title(f"{ds[key][var].long_name} ({var}) - {key} - AnnualSUM | Units: {ds[key][var].units}")
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
#plt.axvline(x = 1996, color = 'g',lw=5, label = 'logging year', alpha=.2)
#plt.ylim(.2e-6,1.5e-6)
if i_var != len(vars_plot)-1 :
plt.xticks([])
plt.xlabel(None)
fig = plt.figure(figsize=(20,9))
plt.title (f"Common Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data, label = var)
plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
#plt.close(fig)
fig1 = plt.figure(figsize=(20,9))
plt.title (f"Fractional Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data/sum_ts, label = var)
#plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
#plt.close(fig1)
#plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
ts_data.year
print ("\nFigure Set 2 >>>>>>")
# For multiple variables on a same plot
#sims = "ORN_PIDA_RD_AgBgW" # Difined at the top
key=sims
vars_plot = (
"""
FATES_GPP
FATES_AUTORESP
FATES_NPP
"""
).split('\n')
vars_plot = vars_plot[1:-1]
ymin = 9e20
ymax = -9e20
sum_ts = 0
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
sum_ts= sum_ts + ts_data
ts_data.plot(figsize=(20,3))
if np.min(ts_data.values) < ymin:
ymin = np.min(ts_data.values)
if np.max(ts_data.values) > ymax:
ymax = np.max(ts_data.values)
plt.title(f"{ds[key][var].long_name} ({var}) - {key} - AnnualSUM | Units: {ds[key][var].units}")
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
#plt.axvline(x = 1996, color = 'g',lw=5, label = 'logging year', alpha=.2)
#plt.ylim(.2e-6,1.5e-6)
if i_var != len(vars_plot)-1 :
plt.xticks([])
plt.xlabel(None)
fig = plt.figure(figsize=(20,9))
plt.title (f"Common Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data, label = var)
plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
fig1 = plt.figure(figsize=(20,9))
plt.title (f"Fractional Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data/sum_ts, label = var)
#plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
print ("\nFigure Set 3 >>>>>>")
# For multiple variables on a same plot
#sims = "ORN_PIDA_RD_AgBgW" # Difined at the top
key=sims
vars_plot = (
"""
FATES_STOREC
FATES_STOREC_TF
"""
).split('\n')
vars_plot = vars_plot[1:-1]
ymin = 9e20
ymax = -9e20
sum_ts = 0
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
sum_ts= sum_ts + ts_data
ts_data.plot(figsize=(20,3))
if np.min(ts_data.values) < ymin:
ymin = np.min(ts_data.values)
if np.max(ts_data.values) > ymax:
ymax = np.max(ts_data.values)
plt.title(f"{ds[key][var].long_name} ({var}) - {key} - AnnualSUM | Units: {ds[key][var].units}")
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
#plt.axvline(x = 1996, color = 'g',lw=5, label = 'logging year', alpha=.2)
#plt.ylim(.2e-6,1.5e-6)
if i_var != len(vars_plot)-1 :
plt.xticks([])
plt.xlabel(None)
fig = plt.figure(figsize=(20,9))
plt.title (f"Common Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
if var == "FATES_L2FR" : continue
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data, label = var)
plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
fig1 = plt.figure(figsize=(20,9))
plt.title (f"Fractional Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data/sum_ts, label = var)
#plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
fig2 = plt.figure(figsize=(20,9))
plt.title (f"Ratio Plot for simulation {key}", fontsize=15)
#for i_var,var in enumerate(vars_plot):
if True:
ts_data = (ds[key]["FATES_STOREC"]/ds[key]["FATES_STOREC_TF"]).groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data, label = "FATES_STOREC/FATES_STOREC_TF")
#plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.title(f"{key}: FATES_STOREC/FATES_STOREC_TF")
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
print ("\nFigure Set 4 >>>>>>")
# For multiple variables on a same plot
#sims = "ORN_PIDA_RD_AgBgW" # Difined at the top
key=sims
vars_plot = (
"""
FATES_STOREN
FATES_STOREN_TF
"""
).split('\n')
vars_plot = vars_plot[1:-1]
ymin = 9e20
ymax = -9e20
sum_ts = 0
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
sum_ts= sum_ts + ts_data
ts_data.plot(figsize=(20,3))
if np.min(ts_data.values) < ymin:
ymin = np.min(ts_data.values)
if np.max(ts_data.values) > ymax:
ymax = np.max(ts_data.values)
plt.title(f"{ds[key][var].long_name} ({var}) - {key} - AnnualSUM | Units: {ds[key][var].units}")
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
#plt.axvline(x = 1996, color = 'g',lw=5, label = 'logging year', alpha=.2)
#plt.ylim(.2e-6,1.5e-6)
if i_var != len(vars_plot)-1 :
plt.xticks([])
plt.xlabel(None)
fig = plt.figure(figsize=(20,9))
plt.title (f"Common Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
if var == "FATES_L2FR" : continue
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data, label = var)
plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
fig1 = plt.figure(figsize=(20,9))
plt.title (f"Fractional Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data/sum_ts, label = var)
#plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
fig2 = plt.figure(figsize=(20,9))
plt.title (f"Ratio Plot for simulation {key}", fontsize=15)
#for i_var,var in enumerate(vars_plot):
if True:
ts_data = (ds[key]["FATES_STOREN"]/ds[key]["FATES_STOREN_TF"]).groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data, label = "FATES_STOREN/FATES_STOREN_TF")
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
#plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.title(f"{key}: FATES_STOREN/FATES_STOREN_TF")
print ("\nFigure Set 5 >>>>>>")
# For multiple variables on a same plot
#sims = "ORN_PIDA_RD_AgBgW" # Difined at the top
key=sims
vars_plot = (
"""
FATES_STOREC_TF
FATES_STOREN_TF
"""
).split('\n')
vars_plot = vars_plot[1:-1]
ymin = 9e20
ymax = -9e20
sum_ts = 0
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
sum_ts= sum_ts + ts_data
ts_data.plot(figsize=(20,3))
if np.min(ts_data.values) < ymin:
ymin = np.min(ts_data.values)
if np.max(ts_data.values) > ymax:
ymax = np.max(ts_data.values)
plt.title(f"{ds[key][var].long_name} ({var}) - {key} - AnnualSUM | Units: {ds[key][var].units}")
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
#plt.axvline(x = 1996, color = 'g',lw=5, label = 'logging year', alpha=.2)
#plt.ylim(.2e-6,1.5e-6)
if i_var != len(vars_plot)-1 :
plt.xticks([])
plt.xlabel(None)
fig = plt.figure(figsize=(20,9))
plt.title (f"Common Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
if var == "FATES_L2FR" : continue
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data, label = var)
plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
fig1 = plt.figure(figsize=(20,9))
plt.title (f"Fractional Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data/sum_ts, label = var)
#plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
fig2 = plt.figure(figsize=(20,9))
plt.title (f"Ratio Plot for simulation {key}", fontsize=15)
#for i_var,var in enumerate(vars_plot):
if True:
ts_data = (ds[key]["FATES_STOREC_TF"]/ds[key]["FATES_STOREN_TF"]).groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data, label = "FATES_STOREC_TF/FATES_STOREN_TF")
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
#plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.title(f"{key}: FATES_STOREC_TF/FATES_STOREN_TF")
fig3 = plt.figure(figsize=(20,9))
plt.title (f"Ratio Plot for simulation {key}", fontsize=15)
#for i_var,var in enumerate(vars_plot):
if True:
ts_data = (ds[key]["FATES_STOREC"]/ds[key]["FATES_STOREN"]).groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data, label = "FATES_STOREC/FATES_STOREN")
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
#plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.title(f"{key}: FATES_STOREC/FATES_STOREN")
print ("\nFigure Set 6 >>>>>>")
# For multiple variables on a same plot
#sims = "ORN_PIDA_RD_AgBgW" # Difined at the top
key=sims
'''
vars_plot = [
"FATES_CROOT_ALLOC",
"FATES_FROOT_ALLOC",
"FATES_FROOT_ALLOC",
"FATES_SEED_ALLOC",
"FATES_STEM_ALLOC",
"FATES_STORE_ALLOC"
]
'''
vars_plot = (
"""
FATES_CROOT_ALLOC
FATES_FROOT_ALLOC
FATES_FROOT_ALLOC
FATES_SEED_ALLOC
FATES_STEM_ALLOC
FATES_STORE_ALLOC
"""
).split('\n')
vars_plot = vars_plot[1:-1]
ymin = 9e20
ymax = -9e20
sum_ts = 0
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
sum_ts= sum_ts + ts_data
ts_data.plot(figsize=(20,3))
if np.min(ts_data.values) < ymin:
ymin = np.min(ts_data.values)
if np.max(ts_data.values) > ymax:
ymax = np.max(ts_data.values)
plt.title(f"{ds[key][var].long_name} ({var}) - {key} - AnnualSUM | Units: {ds[key][var].units}")
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
#plt.axvline(x = 1996, color = 'g',lw=5, label = 'logging year', alpha=.2)
#plt.ylim(.2e-6,1.5e-6)
if i_var != len(vars_plot)-1 :
plt.xticks([])
plt.xlabel(None)
fig = plt.figure(figsize=(20,9))
plt.title (f"Common Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data, label = var)
plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
fig1 = plt.figure(figsize=(20,9))
plt.title (f"Fractional Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data/sum_ts, label = var)
#plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
fig2 = plt.figure(figsize=(20,9))
plt.title (f"Ratio Plot for simulation {key}", fontsize=15)
#for i_var,var in enumerate(vars_plot):
if True:
ts_data = (ds[key]["FATES_FROOT_ALLOC"]/ds[key]["FATES_LEAF_ALLOC"]).groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data, label = "FATES_FROOT_ALLOC/FATES_LEAF_ALLOC")
ts_data = ds[key]["FATES_L2FR"].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data, label = "FATES_L2FR")
#plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.title(f"{key}: FATES_FROOT_ALLOC/FATES_LEAF_ALLOC")
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
print ("\nFigure Set 7 >>>>>>")
# For multiple variables on a same plot
#sims = "ORN_PIDA_RD_AgBgW" # Difined at the top
key=sims
vars_plot = (
"""
FATES_LEAFC
FATES_FROOTC
"""
).split('\n')
vars_plot = vars_plot[1:-1]
ymin = 9e20
ymax = -9e20
sum_ts = 0
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
sum_ts= sum_ts + ts_data
ts_data.plot(figsize=(20,3))
if np.min(ts_data.values) < ymin:
ymin = np.min(ts_data.values)
if np.max(ts_data.values) > ymax:
ymax = np.max(ts_data.values)
plt.title(f"{ds[key][var].long_name} ({var}) - {key} - AnnualSUM | Units: {ds[key][var].units}")
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
#plt.axvline(x = 1996, color = 'g',lw=5, label = 'logging year', alpha=.2)
#plt.ylim(.2e-6,1.5e-6)
if i_var != len(vars_plot)-1 :
plt.xticks([])
plt.xlabel(None)
fig = plt.figure(figsize=(20,9))
plt.title (f"Common Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
if var == "FATES_L2FR" : continue
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data, label = var)
plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
fig1 = plt.figure(figsize=(20,9))
plt.title (f"Fractional Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data/sum_ts, label = var)
#plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
fig2 = plt.figure(figsize=(20,9))
plt.title (f"Ratio Plot for simulation {key}", fontsize=15)
#for i_var,var in enumerate(vars_plot):
if True:
ts_data = (ds[key]["FATES_FROOTC"]/ds[key]["FATES_LEAFC"]).groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data, label = "FATES_FROOTC/FATES_LEAFC")
ts_data = ds[key]["FATES_L2FR"].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data, label = "FATES_L2FR")
#plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.title(f"{key}: FATES_FROOTC/FATES_LEAFC")
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
print ("\nFigure Set 8 >>>>>>")
# For multiple variables on a same plot
#sims = "ORN_PIDA_RD_AgBgW" # Difined at the top
key=sims
vars_plot = (
"""
FATES_NO3UPTAKE
FATES_NH4UPTAKE
"""
).split('\n')
vars_plot = vars_plot[1:-1]
ymin = 9e20
ymax = -9e20
sum_ts = 0
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
sum_ts= sum_ts + ts_data
ts_data.plot(figsize=(20,3))
if np.min(ts_data.values) < ymin:
ymin = np.min(ts_data.values)
if np.max(ts_data.values) > ymax:
ymax = np.max(ts_data.values)
plt.title(f"{ds[key][var].long_name} ({var}) - {key} - AnnualSUM | Units: {ds[key][var].units}")
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
#plt.axvline(x = 1996, color = 'g',lw=5, label = 'logging year', alpha=.2)
#plt.ylim(.2e-6,1.5e-6)
if i_var != len(vars_plot)-1 :
plt.xticks([])
plt.xlabel(None)
fig = plt.figure(figsize=(20,9))
plt.title (f"Common Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
if var == "FATES_L2FR" : continue
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data, label = var)
plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
fig1 = plt.figure(figsize=(20,9))
plt.title (f"Fractional Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data/sum_ts, label = var)
#plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
### *Figure Set 9*
print ("\nFigure Set 9 >>>>>>")
# For multiple variables on a same plot
#sims = "ORN_PIDA_RD_AgBgW" # Difined at the top
key=sims
vars_plot = (
"""
GROSS_NMIN
NET_NMIN
"""
).split('\n')
vars_plot = vars_plot[1:-1]
ymin = 9e20
ymax = -9e20
sum_ts = 0
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
sum_ts= sum_ts + ts_data
ts_data.plot(figsize=(20,3))
if np.min(ts_data.values) < ymin:
ymin = np.min(ts_data.values)
if np.max(ts_data.values) > ymax:
ymax = np.max(ts_data.values)
plt.title(f"{ds[key][var].long_name} ({var}) - {key} - AnnualSUM | Units: {ds[key][var].units}")
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
#plt.axvline(x = 1996, color = 'g',lw=5, label = 'logging year', alpha=.2)
#plt.ylim(.2e-6,1.5e-6)
if i_var != len(vars_plot)-1 :
plt.xticks([])
plt.xlabel(None)
fig = plt.figure(figsize=(20,9))
plt.title (f"Common Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
if var == "FATES_L2FR" : continue
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data, label = var)
plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
fig1 = plt.figure(figsize=(20,9))
plt.title (f"Fractional Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data/sum_ts, label = var)
#plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
print ("\nFigure Set 10 >>>>>>")
# For multiple variables on a same plot
#sims = "ORN_PIDA_RD_AgBgW" # Difined at the top
key=sims
vars_plot = (
"""
SMIN_NO3_LEACHED
DENIT
"""
).split('\n')
vars_plot = vars_plot[1:-1]
ymin = 9e20
ymax = -9e20
sum_ts = 0
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
sum_ts= sum_ts + ts_data
ts_data.plot(figsize=(20,3))
if np.min(ts_data.values) < ymin:
ymin = np.min(ts_data.values)
if np.max(ts_data.values) > ymax:
ymax = np.max(ts_data.values)
plt.title(f"{ds[key][var].long_name} ({var}) - {key} - AnnualSUM | Units: {ds[key][var].units}")
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
#plt.axvline(x = 1996, color = 'g',lw=5, label = 'logging year', alpha=.2)
#plt.ylim(.2e-6,1.5e-6)
if i_var != len(vars_plot)-1 :
plt.xticks([])
plt.xlabel(None)
fig = plt.figure(figsize=(20,9))
plt.title (f"Common Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
if var == "FATES_L2FR" : continue
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data, label = var)
plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
fig1 = plt.figure(figsize=(20,9))
plt.title (f"Fractional Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data/sum_ts, label = var)
#plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
# For multiple variables on a same plot
#sims = "ORN_PIDA_RD_AgBgW" # Difined at the top
key=sims
vars_plot = (
"""
FATES_FROOTC
FATES_LEAFC
FATES_NONSTRUCTC
FATES_REPROC
FATES_SAPWOODC
FATES_STOREC
FATES_STRUCTC
FATES_VEGC
"""
).split('\n')
vars_plot = vars_plot[1:-1]
ymin = 9e20
ymax = -9e20
sum_ts = 0
for i_var,var in enumerate(vars_plot):
print(var)
ts_data = ds[key][var].groupby("time.year").mean('time')
sum_ts= sum_ts + ts_data
ts_data.plot(figsize=(20,3))
if np.min(ts_data.values) < ymin:
ymin = np.min(ts_data.values)
if np.max(ts_data.values) > ymax:
ymax = np.max(ts_data.values)
plt.title(f"{ds[key][var].long_name} ({var}) - {key} - AnnualSUM | Units: {ds[key][var].units}")
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
#plt.axvline(x = 1996, color = 'g',lw=5, label = 'logging year', alpha=.2)
#plt.ylim(.2e-6,1.5e-6)
if i_var != len(vars_plot)-1 :
plt.xticks([])
plt.xlabel(None)
fig = plt.figure(figsize=(20,9))
plt.title (f"Common Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data, label = var)
plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
fig1 = plt.figure(figsize=(20,9))
plt.title (f"Fractional Plot for simulation {key}", fontsize=15)
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
plt.plot(ts_data.year, ts_data/sum_ts, label = var)
#plt.ylim(ymin*.95,ymax*1.05)
plt.legend(fontsize=14)
plt.axvline(x = logging_year, color = 'r',lw=5, label = 'logging year', alpha=.2)
Subplot 1: FATES_NPP (for C-only at that site and RD/ECA)
Subplot 1: FATES_NPP
Subplot 2: FATES_STOREC
Subplot 2: FATES_STOREC_TF
Subplot 3: FATES_STOREN
Subplot 3: FATES_STOREN_TF
Subplot 4: FATES_STOREC_TF / FATES_STOREN_TF
Subplot 5: FATES_FROOTC_ALLOC / FATES_LEAFC_ALLOC
Subplot 5: FATES_L2FR
Subplot 6: FATES_FROOTC / FATES_LEAFC
Subplot 6: FATES_FROOTC
Subplot 6: FATES_LEAFC
Subplot 7: FATES_NO3UPTAKE
Subplot 7: FATES_NH4UPTAKE
Subplot 8: NET_NMIN
Subplot 8: GROSS_NMIN
Subplot 9: SMIN_NO3_LEACHED
Subplot 9: DENIT
print ("\nAll Plots >>>>>>")
# For multiple variables on a same plot
fig, axs = plt.subplots(9,1 , figsize=(15,30), dpi=400)
# Subplot 1 >>>
idx_ax = 0
var = "FATES_NPP"
# C-only
sim_conly = f"{sims.split('_')[0]}_PIDA_Conly_{sims.split('_')[-1]}"
key=sim_conly
ts_data = ds[key][var].groupby("time.year").mean('time')
axs[idx_ax].plot(ts_data.year, ts_data, label = var + " C-only")
# RD
key=sims
ts_data = ds[key][var].groupby("time.year").mean('time')
axs[idx_ax].plot(ts_data.year, ts_data, label = var )
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
axs[idx_ax].set_title(f"{key}\n",fontsize=16)
# Subplot 1 <<<
# Subplot 2 >>>
idx_ax = 1
vars_plot = (
"""
FATES_STOREC_TF
FATES_STOREC
"""
).split('\n')
vars_plot = vars_plot[1:-1]
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
axs[idx_ax].plot(ts_data.year, ts_data, label = var)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
# Subplot 2 <<<
# Subplot 3 >>>
idx_ax = 2
vars_plot = (
"""
FATES_STOREN_TF
FATES_STOREN
"""
).split('\n')
vars_plot = vars_plot[1:-1]
var = vars_plot[0]
ts_data = ds[key][var].groupby("time.year").mean('time')
axs[idx_ax].plot(ts_data.year, ts_data, label = var)
ax_tmp = axs[idx_ax].twinx()
var = vars_plot[1]
ts_data = ds[key][var].groupby("time.year").mean('time')
ax_tmp.plot(ts_data.year,ts_data,'k+', label = var)
ax_tmp.legend(loc = 5)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
# Subplot 3 <<<
# Subplot 4 >>>
idx_ax = 3
ts_data = (ds[key]["FATES_STOREC_TF"]/ds[key]["FATES_STOREN_TF"]).groupby("time.year").mean('time')
axs[idx_ax].plot(ts_data.year, ts_data, label = "FATES_STOREC_TF/FATES_STOREN_TF")
ax_tmp = axs[idx_ax].twinx()
ts_data = (ds[key]["FATES_STOREC"]/ds[key]["FATES_STOREN"]).groupby("time.year").mean('time')
ax_tmp.plot(ts_data.year, ts_data, 'k+', label = "FATES_STOREC/FATES_STOREN")
ax_tmp.legend(loc = 5)
# Subplot 4 <<<
# Subplot 5 >>>
idx_ax = 4
ts_data = (ds[key]["FATES_FROOT_ALLOC"]/ds[key]["FATES_LEAF_ALLOC"]).groupby("time.year").mean('time')
axs[idx_ax].plot(ts_data.year, ts_data, label = "FATES_FROOT_ALLOC/FATES_LEAF_ALLOC")
ts_data = ds[key]["FATES_L2FR"].groupby("time.year").mean('time')
axs[idx_ax].plot(ts_data.year, ts_data, label = "FATES_L2FR")
# Subplot 5 <<<
# Subplot 6 >>>
idx_ax = 5
vars_plot = (
"""
FATES_LEAFC
FATES_FROOTC
"""
).split('\n')
vars_plot = vars_plot[1:-1]
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
axs[idx_ax].plot(ts_data.year, ts_data, label = var)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
ax_tmp = axs[idx_ax].twinx()
ts_data = (ds[key]["FATES_FROOTC"]/ds[key]["FATES_LEAFC"]).groupby("time.year").mean('time')
ax_tmp.plot(ts_data.year, ts_data, 'k+', label = "FATES_FROOTC/FATES_LEAFC")
ax_tmp.legend(loc = 1)
# Subplot 6 <<<
# Subplot 7 >>>
idx_ax = 6
vars_plot = (
"""
FATES_NO3UPTAKE
FATES_NH4UPTAKE
"""
).split('\n')
vars_plot = vars_plot[1:-1]
var = vars_plot[0]
ts_data = ds[key][var].groupby("time.year").mean('time')
axs[idx_ax].plot(ts_data.year, ts_data, label = var)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
ax_tmp = axs[idx_ax].twinx()
var = vars_plot[1]
ts_data = ds[key][var].groupby("time.year").mean('time')
ax_tmp.plot(ts_data.year,ts_data,'k+', label = var)
ax_tmp.legend(loc = 5)
# Subplot 7 <<<
# Subplot 8 >>>
idx_ax = 7
vars_plot = (
"""
GROSS_NMIN
NET_NMIN
"""
).split('\n')
vars_plot = vars_plot[1:-1]
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
axs[idx_ax].plot(ts_data.year, ts_data, label = var)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
# Subplot 8 <<<
# Subplot 9 >>>
idx_ax = 8
vars_plot = (
"""
SMIN_NO3_LEACHED
DENIT
"""
).split('\n')
vars_plot = vars_plot[1:-1]
for i_var,var in enumerate(vars_plot):
ts_data = ds[key][var].groupby("time.year").mean('time')
axs[idx_ax].plot(ts_data.year, ts_data, label = var)
axs[idx_ax].set_ylabel (f"{ds[key][var].units}")
# Subplot 9 <<<
for i in range(len(axs)):
axs[i].legend()
axs[i].axvline(x = logging_year, color = 'r',lw=5, alpha=.2)
fig.savefig('./Plots/' + f'{key}.pdf',bbox_inches='tight')
fig.savefig('./Plots/' + f'{key}.png',bbox_inches='tight')
pwd
print ("Successful run")