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Abstract—When simulating vegetation dynamics, 

photosynthesis accounts for a large fraction of the computational 

cost in most Earth System Models (ESMs). This is largely since 

photosynthesis is represented as a system of nonlinear equations, 

and the solution requires the use of an initial guess followed by 

many iterations of the numerical solver to obtain a solution. We 

use machine learning (ML) to replicate the response surface of the 

model’s numerical solver to improve the choice of initial guess, 

therefore requiring fewer iterations to obtain a final solution. We 

implemented this test on the leaf-level calculations as well as at the 

canopy scale, and for both we observed fewer iterations of the 

photosynthesis solver when a ML-based initial guess was 

implemented. The model tested here is the Energy Exascale Earth 

System Model - Land Model (ELM). The ML-based algorithms 

used here are trained on simulations from the model itself and 

used only to improve the initial guess for the solver; therefore, the 

model maintains its own set of physics to obtain the final solution. 

This work shows novel ways to utilize ML-based methods to 

improve the performance of numerical solvers in ESMs.  

Keywords—photosynthesis, numerical solver, machine learning, 

Earth System Model 

I. INTRODUCTION

In Earth System Modeling, simulating the complex 
dynamics of vegetation, particularly photosynthesis, presents a 
significant computational challenge (Bonan and Doney 2018). 
This challenge is magnified when working with models like the 
Energy Exascale Earth System Model - Land Model (ELM), 
which incorporates numerous processes across different scales 
(Golaz et al., 2022). Photosynthesis, a core component of 
vegetation dynamics, is typically represented as a system of 
nonlinear equations (Collatz et al., 1992; Massoud et al., 2019). 
Solving these equations requires iterative methods, where 
the 

solution is gradually refined through successive approximations 
(Fig. 1). The computational cost of these iterative solutions can 
be substantial (Ricciuto et al., 2018; Lu et al., 2018; Massoud 
2019), especially when the simulations are extended over large 
spatial domains or long temporal scales. 

The computational burden is particularly pronounced in 
high-resolution simulations that span continental or global 
scales, where the data outputs can reach petabytes in size 
(Abdulah et al., 2024). For single-site simulations, the data 
generated can already be on the order of gigabytes. The sheer 
volume of data and the iterative nature of the numerical solvers 
impose significant demands on computational resources 
(Mengaldo et al., 2019). As Earth System Models become more 
sophisticated, there is a pressing need to enhance the efficiency 
of these simulations to make them more feasible and accessible 
for comprehensive climate studies.  

To address this challenge, we propose the integration of 
machine learning (ML) techniques into the solver process, 
specifically targeting the initial guess in the iterative solution of 
photosynthesis equations. Traditional numerical solvers begin 
with an initial guess, which is then iteratively refined to reach 
the final solution. The quality of this initial guess is crucial; a 
poor initial guess can lead to a higher number of iterations, 
thereby increasing the computational cost (Tromeur-Dervout 
and Vassilevski 2006; Ye et al., 2020). By employing ML to 
generate a more accurate initial guess (Fig. 2), we hypothesize 
that the total number of iterations required by the solver can be 
significantly reduced, leading to faster and more efficient 
simulations.  

In this study, we focus on two scales within ELM: the leaf-
level and the canopy-scale (Zhu et al., 2019, 2020; Bisht et al., 
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2024). At both scales, we evaluate the performance of ML-based 
initial guesses compared to traditional methods. Our approach 
leverages a large catalog of model simulations, using the data to 
train neural networks that can predict optimal starting points for 
the solver. The potential benefits of this approach are 
substantial, particularly in reducing the computational costs 
associated with large-scale, long-term simulations.  

Fig. 1. Schematic of Iterative Root Finding in the Photosynthesis Solver. The 
process begins with an initial guess x0, where the function value is f(x0). After 
the first iteration, the solution is updated to x1 with the corresponding function 
value f(x1). The process continues with the solution advancing to x2 and f(x2) 
after the second iteration. This iterative procedure continues until the final 
solution xf is reached, where xf = α, after n iterations. This schematic illustrates 
the multiple iterations required to converge to the final solution in the nonlinear 
photosynthesis equations. 

The results from our study demonstrate that the ML-based 
approach can indeed reduce the number of iterations required in 
the solver, with varying degrees of success depending on the 
scale. For leaf-level simulations, we observed a significant 
reduction in computational cost, while at the canopy scale, the 
improvements were more modest. These findings suggest that 
while ML-based methods hold promise for enhancing solver 
efficiency, further refinement and adaptation are necessary to 
fully realize their potential, particularly at larger scales.  

This paper contributes to the growing body of research 
exploring the intersection of machine learning and Earth System 
Modeling (Greer et al., 2021; Pawar and San 2022; Chen et al., 
2023; Massoud et al., 2023), offering novel insights into how 
data-driven techniques can be harnessed to accelerate complex 
simulations (Eyring et al., 2024). As the demand for more 
detailed and accurate climate models continues to grow, the 
integration of ML into these models offers a pathway toward 
more efficient and scalable simulations, paving the way for more 
comprehensive climate studies. 

Fig. 2. Schematic of a hypothetical Neural Network structure used to improve 
the initial guess for the photosynthesis solver. The neural network (NN) takes 
as inputs various variables from the original model simulation, including the 
initial guess “x0”, leaf maintenance respiration “lmr_z”, and other relevant 
parameters. The output of the NN is the predicted final solution “xf”, which is 
then used as the new initial guess “x0” for the numerical solver. The model 
subsequently applies its own physical equations to converge on the actual final 
solution “xf”. The goal of this approach is to provide an initial guess that is 
closer to the true final solution, thereby reducing the total number of iterations 
needed for the solver to converge. 

II. THE ENERGY EXASCALE EARTH SYSTEM MODEL (E3SM)

The Energy Exascale Earth System Model (E3SM) is a state-
of-the-science Earth system model developed by the United 
States Department of Energy (DOE) to advance our 
understanding of the complex interactions between climate and 
energy systems. E3SM is designed to operate at exascale 
computing levels, enabling high-resolution simulations that 
capture critical processes influencing energy production, water 
resources, and climate dynamics across regional and global 
scales. 

Within the E3SM framework, the land surface is represented 
by the E3SM Land Model (ELM). ELM is a comprehensive 
model that simulates the fundamental processes governing 
carbon, water, energy, and nutrient cycles across terrestrial 
ecosystems. It integrates various land surface processes, 
including vegetation dynamics, soil hydrology, and 
biogeochemistry, as well as the effects of land-use changes 
(Lawrence et al., 2019). This integration within a single 
modeling framework allows ELM to provide detailed 
predictions of land-atmosphere interactions under a wide range 
of climate scenarios. ELM's robust capabilities are essential for 
advancing climate science, particularly in projecting the impacts 
of climate change on terrestrial ecosystems. By utilizing 
exascale computing, ELM enhances the accuracy and resolution 
of these projections, making it a valuable tool for informing 
policy and decision-making at both regional and global levels. 

In this study, we applied the ELM component of E3SM at 
the temperate forests of the southeastern United States for the 
years 1850-2005, specifically focusing on the evergreen Duke 
Forest. The simulations were driven by meteorological data and 
other site-specific characteristics, including stoichiometry, 
allometry, and soil properties, derived from the Free-Air CO2 
Enrichment (FACE) experiments (Walker et al., 2014, 2019). 
This site provides a representative setting for testing the model's 
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performance in simulating photosynthesis and other key land 
surface processes under varying environmental conditions. 

III. BACKGROUND AND MOTIVATION  

A. Computational Bottlenecks 

The motivation for this work arises from the pressing need 
to improve the computational efficiency of photosynthesis 
simulations in ESMs. As models grow more complex and the 
demand for high-resolution, long-term simulations increases, 
the computational burden associated with these simulations has 
become a significant bottleneck. Reducing the number of 
iterations required in the numerical solver presents a promising 
avenue for mitigating this challenge.  

In recent years, machine learning (ML) has emerged as a 
powerful tool for enhancing various aspects of Earth System 
Modeling. ML techniques, particularly neural networks, excel at 
identifying patterns in large datasets and making predictions 
based on those patterns. This capability makes ML an ideal 
candidate for improving the initial guess in numerical solvers, 
thereby reducing the number of iterations needed to achieve 
convergence.  

B. Potential Paths Forward 

Previous studies have explored the use of simpler statistical 
methods, such as multi-linear regression (MLR), to improve 
solver performance by refining the initial guess. While these 
methods have shown some success, they often lack the 
flexibility and accuracy required for more complex, nonlinear 
problems like photosynthesis. Neural networks, with their 
ability to capture complex, nonlinear relationships, offer a more 
robust alternative.  

 

Fig. 3. Schematic Flow Diagram Comparing the Original and Neural Network 
(NN)-Based Initial Guesses for the Photosynthesis Solver. The top panel 
illustrates the process in the original ELM model, where the initial guess 
x0=0.7×Ca is input into the numerical solver. After a certain number of 
iterations, the solver converges to the final solution xf, denoted as xf,ELM. The 
bottom panel depicts the process using the NN-based approach, where the 
output of the NN (xf,NN)  is used as the new initial guess (x0,NN). This initial guess 
enters the same numerical solver, which then converges to the same final 
solution xf,ELM regardless of which initial guess was used. The key difference is 
that the NN-based initial guess is intended to be closer to the true final solution, 
thereby reducing the total number of iterations required by the solver. 

This study seeks to build on these earlier efforts by 
leveraging a large catalog of model simulations to train neural 
networks specifically designed to improve the initial guess for 
the photosynthesis solver in the ELM model (Fig. 3). By doing 
so, we aim to significantly reduce the computational cost 
associated with these simulations, making high-resolution, long-
term simulations more feasible.  

TABLE I.  TABLE OF PARAMETERS FOR LEAF-LEVEL SIMULATIONS  

Input / 

Output 

Parameters used for Leaf-level Simulations 

Parameter 

Symbol 
Parameter Name Unit 

Input x0 initial guess of the solution 
µmol 

CO2/m
2/s 

Input lmr_z 
leaf maintenance respiration 

rate  
µmol 

CO2/m
2/s 

Input par_z 
par absorbed per unit LAI 

for canopy layer  
W/m2 

Input rh_can canopy air relative humidity - 

Input gb_mol 
leaf boundary layer 

conductance 
µmol 

H2O/m2/s 

Input je electron transport rate 
µmol 

electrons/m2/s 

Input cair 
atmospheric CO2 partial 

pressure 
Pa 

Output xf final value of the solution 
µmol 

CO2/m
2/s 

 

The scale of the data involved in this work is substantial, 
with single-site simulations generating gigabytes of data and 
continental or global simulations potentially reaching terabytes 
in size. This large-scale data availability presents both a 
challenge and an opportunity. On one hand, it necessitates the 
use of advanced data management and processing techniques. 
On the other, it provides a rich dataset for training ML models 
that can generalize well across different scales and 
environmental conditions. 

TABLE II.  TABLE OF PARAMETERS FOR CANOPY-SCALE SIMULATIONS  

Input / 

Output 

Parameters used for Canopy-Scale Simulations 

Parameter 

Symbol 
Parameter Name Unit 

Input t_veg0 initial guess of the solution K 

Input forc_lwrad 
downward infrared 

(longwave) radiation 
W/m2 

Input forc_t atmospheric temperature K 

Input forc_u atmospheric wind speed (east) m/s 

Input forc_pco2 partial pressure of CO2  Pa 

Input sabv 
solar radiation absorbed by 

vegetation 
W/m2 

Input t_grnd Ground surface temperature K 

Output t_vegf final value of the solution K 

 

IV. PROPOSED NEURAL NETWORK BASED INITIAL GUESS  

In this section, we outline the approach of utilizing Neural 
Networks (NNs) to generate improved initial guesses for the 
photosynthesis solver in the ELM model. The method was 
applied at both the leaf level and the canopy scale, with the goal 
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of reducing the number of iterations required for the solver to 
converge to a final solution. By integrating NNs, which are 
trained on a large dataset of model simulations, we aim to 
enhance the efficiency of the solver by providing a more 
accurate starting point. 

 

Fig. 4. Bar plots depicting the total number of iterations required for solving 
the photosynthesis model at the leaf level across different simulations. The 
"Original Simulation" category refers to simulations using the original model 
setup, while the "NN-based Initial Guess" category represents simulations 
utilizing a neural network-based initial guess for the photosynthesis solver. The 
data illustrate that simulations incorporating the NN-based initial guess 
generally require fewer iterations compared to the baseline approach. 

A. Leaf-level Photosynthesis Simulations  

At the leaf level, photosynthesis is modeled through a set of 
nonlinear equations that require an iterative solution. 
Traditionally, the ELM model uses an initial guess x0=0.7×Ca, 
where Ca represents the internal CO2 concentration of the leaf. 
This initial guess is then processed through a numerical solver 
that iteratively adjusts the solution until convergence is achieved 
at the final value xf,ELM. 

To improve this process, we developed a NN model that uses 
the inputs listed in Table 1. Included in the inputs is the original 
initial guess (x0,ELM), which provides the NN with additional 
information that can be helpful in finding the final solution. The 
output of the NN model is the predicted final solution (xf,NN), 
which is then used as the initial guess (x0,NN) for the numerical 
solver.  

B. Canopy-scale Photosynthesis Simulations  

 At the canopy scale, photosynthesis becomes increasingly 
complex due to the interaction of various environmental factors. 
In the ELM model, the canopy photosynthesis process is 
intricately linked to the transfer of energy within the canopy, 
which includes terms such as evapotranspiration, sensible heat 
flux, and temperature distributions within the canopy. 
Traditionally, the model approaches this by using an initial 
guess t_veg0 derived from predefined physical equations, and 
then iteratively refines this guess until a final solution t_vegf is 
obtained, which balances the energy transfer equations.  

 For the canopy-scale application, the NN model was trained 
using the inputs shown in Table 2. The NN's output is the 

predicted final solution t_vegf,NN, which is then used as the initial 
guess t_veg0,NN in the solver. The solver, utilizing the NN-based 
guess, proceeds through its iterative process to arrive at the final 
solution t_vegf, as it would using the original model-based initial 
guess. Although the NN-based approach showed promise in 
reducing the total number of iterations, further refinements in 
the network architecture and training data could potentially 
enhance performance at the canopy scale. 

V. REDUCING TOTAL ITERATIONS IN THE SOLVER 

 A primary goal of this study was to determine whether using 
a neural network (NN)-based initial guess could reduce the total 
number of iterations required by the photosynthesis solver in the 
ELM model. This section reports on the results of the analysis, 
and quantifies the reduction in the total number of iterations 
needed for each set of simulations. 

A. Reducing Leaf-level Solver Iterations 

Fig. 4 displays histograms comparing the total number of 
iterations required by the photosynthesis solver in the leaf-level 
simulations. The baseline simulation required a total of 
3,227,440 iterations. When the NN-based initial guess was 
implemented, the total number of iterations was reduced to 
2,380,728, resulting in a significant savings of 26.23%, 
demonstrating the effectiveness of the NN-based approach in 
improving computational efficiency at the leaf level. For both 
sets of simulations, most solutions required 1 or 2 iterations, but 
overall, the accumulated benefits of the NN-based initial guess 
had significant impacts to the overall efficiency of the solver. 

 

Fig. 5. Bar plots illustrating the total number of iterations required for solving 
the photosynthesis model at the canopy scale. The "Original" category denotes 
simulations using the original model setup, while "MLR" refers to simulations 
with a multi-linear regression-based initial guess, and "NN" indicates 
simulations employing a neural network-based initial guess. The results 
demonstrate that both MLR and NN-based initial guesses generally lead to 
fewer iterations compared to the original model simulations. 

B. Reducing Canopy-scale Solver Iterations 

Fig. 5 presents histograms of iteration counts for the canopy-
scale simulations. The baseline simulation required 3,372,431 
iterations using the original initial guess. The introduction of the 
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NN-based initial guess reduced this number to 3,283,999 
iterations, yielding a savings of 2.62%. Interestingly, a multi-
linear regression (MLR)-based initial guess provided an even 
greater reduction, with the total iterations decreasing to 
3,267,088, corresponding to a 3.12% savings. These results 
indicate that while the NN-based approach is beneficial, the 
complexity of canopy-scale processes may necessitate further 
refinement of the NN model to maximize efficiency gains. 

C. Percentage Reduction in Iterations  

 Table 3 summarizes the percentage reduction in the total 
number of iterations for both leaf-level and canopy-scale 
simulations. As shown, the NN-based initial guess yields a 
substantial reduction in iterations at the leaf level (26.23%), with 
modest improvements observed at the canopy scale (2.62%). 
The MLR-based initial guess provides a slightly better reduction 
at the canopy scale (3.12%). These modest improvements, 
reported based on our simulations for the historical period of 
~150 years, can lead to significant computational efficiency for 
climate projection simulations that are often conducted in 
ensembles for 100-300 years in the future. These findings 
highlight the potential of NN-based methods to enhance 
computational performance in Earth System Models while also 
identifying areas for further research and optimization. 

TABLE III.  PERCENTAGE SAVINGS IN NUMBER OF ITERATIONS  

Simulation # of Iterations % Savings 

Leaf-Level   

Original 3,227,440 N/A 

NN 2,380,728 26.23% 

Canopy-Scale   

Original 3,372,431 N/A 

MLR 3,267,088 3.12% 

NN 3,283,999 2.62% 

 

VI. POTENTIAL IMPROVEMENTS IN FUTURE WORK  

 This study demonstrates the capability of neural networks to 
reduce solver iterations in ELM, but several enhancements could 
further strengthen the approach. First, understanding the 
influence of individual features on prediction quality is crucial, 
and future work will include methods like Shapley values or 
sensitivity analysis to reveal the contributions of each input 
feature. Such insights could improve model interpretability and 
guide adjustments to enhance performance. 

 In addition, while this paper reports reductions in solver 
iterations as a percentage, future work will translate these 
savings into wall-clock time to provide a more direct measure of 
computational efficiency. This will involve a breakdown of 
computational resource usage, including memory and 
processing demands, to better capture the impact of iteration 
reduction on overall performance. 

 Although ELM does not use widely known heuristics for 
generating initial guesses, it does provide a default estimate 
(e.g., x0=0.7×Ca for leaf-level photosynthesis). While our neural 

network approach has demonstrated improvements over this 
default, further comparisons with traditional heuristic methods, 
should they become available, will offer a more comprehensive 
benchmark. 

 Moreover, to address the relevance of this approach for Big 
Data applications, future work will apply this methodology to 
larger spatial and temporal scales. Expanding to higher-
resolution simulations aligns this research with Big Data 
challenges, enhancing its applicability to exascale computing 
environments and complex, large-scale Earth system modeling. 

 Another area for improvement lies in the description of the 
neural network itself. A more detailed account of the network 
architecture, including its layers, activation functions, and 
training procedures, will be provided in future studies. This 
increased transparency will support reproducibility and help 
researchers understand the underlying mechanisms contributing 
to performance improvements. 

 At the canopy scale, the neural network achieved a 2.62% 
reduction in solver iterations, which was slightly lower than the 
3.12% improvement achieved by multilinear regression. This 
difference suggests that canopy-level complexity may require 
more advanced model architectures or hybrid approaches. 
Future work will consider additional environmental factors, 
explore hyperparameter tuning, and potentially integrate more 
sophisticated network designs to address these challenges. 

 Lastly, the introduction of machine learning into numerical 
solvers presents potential challenges in robustness and 
generalization. Future studies will therefore include robustness 
testing across diverse datasets and environmental conditions to 
ensure the model's adaptability. These planned improvements 
will enhance the model’s reliability, scalability, and utility for 
Earth system modeling at exascale computing scales. 

CONCLUSIONS 

 This study explored the use of machine learning (ML) to 
accelerate the performance of the photosynthesis solver in the 
E3SM Land Model (ELM) by improving the initial guess 
required for iterative solutions. By implementing a neural 
network (NN)-based initial guess, we observed a significant 
reduction in the total number of iterations required at the leaf 
level, achieving a 26.23% savings. At the canopy scale, the NN-
based approach also led to a reduction in iterations, though the 
improvement was more modest (2.62%), and a traditional multi-
linear regression (MLR) approach yielded slightly better results 
(3.12%). 

 These findings underscore the potential of ML-based 
methods to enhance computational efficiency in Earth System 
Models, particularly in complex model parameterizations like 
the one used for photosynthesis simulations. While the NN-
based approach was highly effective at the leaf level, the canopy 
scale results suggest that further refinement of the neural 
network model may be necessary to fully realize its potential in 
more complex scenarios. Overall, this work demonstrates a 
promising avenue for integrating ML techniques into the 
modeling workflow, offering new opportunities to optimize 
performance and reduce computational costs in large-scale 
climate simulations. 
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